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bstract

Approximation methods are often used in porous electrode models to eliminate the need to solve the local solid phase diffusion equation. These
ethods include Duhamel’s superposition method, a diffusion length method and a polynomial approximation method which have long been used

n the literature. The pseudo steady state (PSS) method is a method that has been used recently to develop a solution to the diffusion equation in
spherical particle with time dependent boundary conditions, but the PSS method has not been used in a porous electrode model. These methods

re compared to each other in a dimensionless analysis study, and they are used in a porous electrode model to predict the discharge curves for a
iCoO2 electrode. Simulation results presented here indicate that the PSS method or the high order polynomial method should be used in a porous
lectrode model to obtain accuracy and save computation time.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Porous electrode models have been used widely to study
he cell performance of various lithium based battery systems
1–8]. These models include mass transport in the liquid phase,
lectronic conduction in the solid phase and liquid phase in
acro-scale and lithium diffusion inside solid phase particles

t a local position in the porous electrode. The lithium transport
n the solid phase is usually described by Fick’s second law for
spherical particle:

∂cs

∂t
= 1

r2

(
Dsr

2 ∂cs
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)
(1a)
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The porous electrode model solution requires solving this
article diffusion equation in the an extra pseudo-dimension r.
onsequently, the number of unknown variables in the model

s much larger, which requires more computation time. There-
ore, approximation methods are often used in porous electrode
odels to eliminate the need for the time consuming calcula-

ion of solid phase diffusion in the extra r dimension. These
ethods include a Duhamel’s superposition method [1,2], a dif-

usion length method [9,10] and a polynomial approximation
ethod [11,12]. In addition, Liu [13] developed recently an

nalytical solution to the diffusion problem with time dependent
oundary conditions based on Ölçer’s pseudo steady state (PSS)
pproach [14,15]. To our knowledge, Liu’s method has not yet
een used a porous electrode model. In this work, these approx-
mation methods are compared to each other in a dimensionless
nalysis study, and they are used in a porous electrode model
o simulate the discharge profiles of a LiCoO2 electrode. The
dvantages and disadvantages of these methods are discussed

ased on the results from both studies. This work provides useful
nformation to help one choose an approximation method for his
pecific application to maintain accuracy and save computation
ime.
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Nomenclature

Brug Bruggeman coefficient
cmax maximum Li+ concentration in the particles

(mol cm−3)
cs Li+ concentration in the solid particles

(mol cm−3)
cs volume averaged Li+ concentration inside

spherical particles (mol cm−3)
cse Li+ concentration at the surface of the solid

particles (mol cm−3)
C dimensionless Li+ concentration
De diffusion coefficient of the electrolyte (cm2 s−1)
Ds solid phase Li+ diffusion coefficient in the

particles (cm2 s−1)
f± mean molar salt activity coefficient
F Faraday’s constant (96,487 C mol−1)
jn pore wall flux (mol (cm2 s)−1)
k summation counter in Eq. (2b) represents

previous time steps
kp kinetic rate constant

((mol (cm2 s)−1) ((mol cm−3)−1.5)
ls diffusion length of a spherical particle (cm)
n summation counter in Eq. (2b) represents current

time step
qm summation term used in (Eq. (9c))
qt volume averaged concentration flux (mol cm−4)
R gas constant (8.3145 J (mol K)−1)
Rs radius of the spherical particles (cm)
Rf contact resistance (� cm2)
S geometric area of the electrode (cm2)
t time (s)
t0+ transference number of the electrolyte
T temperature (K)
Ueq equilibrium potential of the electrode (V)
v thermodynamic factor of the electrolyte
W active material loading in the electrode (g)
x dimensionless distance in spherical particles

Greek letters
αa, αc transfer coefficients
β symmetry factor
δ dimensionless pore wall flux
δp, δs electrode or separator thickness (cm)
εe, εs volume fraction of the electrolyte or active mate-

rial in solid phase
φe, φs liquid or solid phase potential (V)
κe conductivity of the electrolyte (S cm−1)
λm positive eigen-value determined from Eq. (9d)
σs conductivity of the solid phase (S cm−1)
τ dimensionless time
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. Overview on approximation methods

.1. Duhamel’s superposition method

Duhamel’s superposition method was the first approximation
ethod [1,2] used in the porous electrode model. Duhamel’s
ethod relates the solution of a boundary value problem with

ime dependent boundary conditions to the solution of a similar
roblem with time-independent boundary conditions by means
f a simple relation [16]. The Duhamel superposition equation
or the solid phase diffusion equation is [1,2]:

Ds

Rs

∂cs

∂r

∣∣∣∣
r=Rs

=
n−2∑
k=0

(cs,k+1 − cs,k)


t
An−k + (cs,n − cs,n−1)


t
A1

(2a)
here

n−k = a[(n − k)
t] − a[(n − k − 1)
t] (2b)

nd

(t) =
∫ t

0

∂c̄s

∂r
(Rs, ζ) dζ (2c)

n expression for a(t) was developed by using the Laplace trans-
ormation technique for short times and long times [1,2] and can
e written in terms of a dimensionless time τ = tDs/R

2
s :

(τ) = −τ + 2
( τ

π

)1/2
[

1 + 2
∞∑

n=1

(
exp

(−n2

τ

)

− n
(π

τ

)1/2
erfc

(
n√
τ

))]
short time (3a)

(τ) = 2

π2

∞∑
n=1

1

n2 [1 − exp(−n2π2τ)] long time (3b)

he expressions (Eqs. (3a) and (3b)) are both uniformly valid.
owever, Eq. (3a) converges more quickly with fewer terms at

hort times than Eq. (3b).
The relation between the surface concentration at current time

tep cs,n and time dependent pore wall flux jn can be established
hrough Eqs. (1c) and (2a) as follow:

jn

Rs
=

n−2∑
k=0

(cs,k+1 − cs,k)


t
An−k + (cs,n − cs,n−1)


t
A1 (4a)

t should be noted that values of the surface concentration from
ll previous time steps cs,k are required in Eq. (4a) to calculate
he value at current time step cs,n. The volume averaged concen-
ration c̄s in the spherical particles can be readily calculated as
ollow:

s = c0 +
∫ t

0
− 3

Rs
jn dt (4b)
.2. Diffusion length method

Wang et al. [9] used diffusion length concept to simplify the
olid phase diffusion equation in the porous electrode model. By
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ssuming a parabolic concentration profile in the diffusion layer
nd using the volume average technique, they determined the
iffusion length to be Rs/5 for spherical particles. The solution
f Eqs. (1a)–(1c) can be approximated with a set of differential
nd algebraic equations:

∂cs

∂t
= − 3

Rs
jn (5a)

Ds

ls
(cse − cs) = −jn (5b)

here ls is the diffusion length and takes the value of Rs/5 for
pherical particles.

The diffusion length method predicts that the surface con-
entration and volume averaged concentration inside a particle
re linearly dependent on each other, which should be valid
nly after the diffusion layer builds up to its steady state. There-
ore, the method is inadequate at short times or under dynamic
perations, such as pulse or current interrupt operations.

In view of the shortcoming of the diffusion length method,
ang and Srinivasan [10] corrected the diffusion length method

y empirically incorporating an intuitively expressed time
ependent term into the diffusion length equations:

∂cs

∂t
= − 3

Rs
jn (6a)

Ds

ls
(cse − cs) = −jn

(
1 − exp

(
−4

3

√
Dst

ls

))
(6b)

he empirical term was formed based on the observation that the
urface concentration increases exponentially at short times. The
alue of the multiplier in the exponential term was determined by
atching the surface concentration profiles obtained with Eqs.

6a) and (6b) at given pore wall fluxes to those from Duhamel’s
ethod. The value of 4/3 was found to be able to provide good

esults under a wide range of operating conditions [10].

.3. Polynomial approximation method

Polynomial approximation method [11,12] by Subramanian
t al. (see also Rice and Do [17], Chapter 12) was also based
n the parabolic concentration profile assumption and volume
veraging technique. The authors first assumed that the concen-
ration profile could be described by a second order polynomial
c = a + br2) and the equations for low order polynomial method
ere derived as:

∂cs

∂t
= − 3

Rs
jn (7a)

5Ds

Rs
(cse − cs) = −jn (7b)

o achieve better accuracy at short times, the authors [11,12]
sed a higher order polynomial (c = a + br2 + dr4) model for the

oncentration profile. The equations for this high order polyno-
ial method are as follows:

∂cs

∂t
= − 3

Rs
jn (8a)

e
h
d
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dq̄t

dt
+ 30

Ds

R2
s
q̄t + 45

2

jn

R2
s

= 0 (8b)

35Ds

Rs
(cse − cs) − 8Dsq̄t = −jn (8c)

here q̄t is the volume averaged concentration flux which phys-
cally defines the change of concentration with respect to the
osition in the system [12].

This high order polynomial method uses a different approach
rom the diffusion length method to improve the solution accu-
acy at short times. The diffusion length method uses the
mpirical exponential term in the equation and determines the
ultiplier value by matching surface concentration profiles to

he exact solutions. The high order polynomial method uses
higher order polynomial for the concentration profile in the

erivation, and one could derive new sets of equations with an
ven higher order polynomial model, if needed, following the
ame procedures discussed in the papers [11,12].

.4. Pseudo steady state method

Liu [13] applied Ölçer’s pseudo steady state (PSS) method
14,15], which is a form of a finite integral transform technique
o eliminate the independent spatial variable r from the solid
hase diffusion equation. For diffusion problems with a time
ependent pore wall flux jn as a boundary condition described
y Eqs. (1a)–(1c), the generalized PSS solution was found to be
13]:

∂cs

∂t
= − 3

Rs
jn (9a)

∂qm

∂t
= λ2

mDs

R2
s

eλ2
mDst/R

2
s jn (9b)

se − cs = − Rs

5Ds
jn + 2Rs

Ds

∞∑
m=1

√
1 + λ2

m

λ2
m

(−1)m sin(λm)

× [jn − e−λ2
mDst/R

2
s qm] (9c)

here qm is denoted only as a summation term in Eq. (9c) and
tself does not have a physical meaning. The λm values were
etermined from the eigenvalue equation:

m = tan(λm) (9d)

qs. (9a)–(9d) were developed and implemented only for diffu-
ion in spherical particles. However, the PSS method could be
xtended to diffusion in particles with other geometries, such
s disks and cylinders, following the procedures detailed in the
ef. [13].

. Dimensionless analysis
Before these approximation methods are used in a porous
lectrode model, we use dimensionless analysis to compare
ow these methods perform on diffusion problems with time
ependent boundary conditions. Eqs. (1a)–(1c) are converted to
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imensionless form using following dimensionless variables:

= cs

cmax
, x = r

Rs
, τ = Dst

R2
s

, δ(τ) = jnRs

Dscmax

(10)

he governing equation and boundary conditions in dimension-
ess forms are:

∂C

∂τ
= 1

x2

(
x2 ∂C

∂x

)
(11a)

∂C

∂x

∣∣∣∣
x=0

= 0 (11b)

∂C

∂x

∣∣∣∣
x=1

= −δ(τ) (11c)

The exact solutions to the dimensionless diffusion equations
re compared to those obtained from approximation methods
n Figs. 1 and 2 where the dimensionless surface concentra-
ion minus the volume averaged concentration is plotted against
imensionless time. The dimensionless pore wall flux δ(τ) takes
he form of 1 − τ and sin(5τ), respectively, in the figures. The
nite difference method with 100 internal node points was used

o find a numerical solution to Eqs. (11a)–(11c) and is named the
xact solution. Two summation terms are used in PSS method
m equal to 2).

As shown in Figs. 1 and 2, the low order polynomial method
or uncorrected diffusion length method) is inadequate at short
imes for transient behavior. The method fails to converge to the
xact solution at steady state. Further simulation shows that the
olution of low order polynomial method will match the exact
olution at long times only when the pore wall flux jn or δ(τ)
s a constant. Although the corrected diffusion length method

rovides improved accuracy at short times by incorporating the
mpirical exponential term, it has the same problem as the uncor-
ected method at long times where the exponential term becomes
lose to zero (see Eqs. (6a) and (6b)). These simulation results

ig. 1. Comparison of approximation solutions with the exact solution of the
imensionless diffusion equation. δ(τ) = 1 − τ.
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ig. 2. Comparison of approximation solutions with the exact solution of the
imensionless diffusion equation. δ(τ) = sin(5τ).

ndicate that the low order polynomial method and the corrected
iffusion length method cannot provide as accurate results as the
uhamel’s superposition method, the PSS method or the high
rder polynomial method.

By using a high order polynomial model for the concentration
rofile in the solid particles, the high order polynomial method
s not only able to describe transient behavior in more detail,
ut also it is able to provide much more accurate results at long
imes. In addition, the method remains computational simplistic
nd can be easily implemented in a porous electrode model.

The usage of the PSS method is mainly affected by the num-
er of summation terms included. If no summation terms are
sed, the method degrades to the low order polynomial method.
ncreasing the number of summation terms improves the accu-
acy of the method, mostly at short times. Our simulation shows
hat PSS method with two or three summation terms is able
o provide accurate results under a wide range of operating
onditions. More summation terms require solving more differ-
ntial equations (Eq. (9b)) and could pose numerical difficulties
ecause of the exponential terms. Fig. 3 shows that the PSS
ethod with four summation terms must be solved with a tight-

ned error tolerance in order to obtain accurate results when
he dimensionless pore wall flux is δ(τ) = sin(5τ). If the PSS

ethod is used in the porous electrode model, the approxima-
ion equations are tightly coupled to other equations for the liquid
hase concentration and potentials. The smaller error tolerance
equired by the PSS method with several summation terms could
ave negative effects on solving the whole equation system,
endering it computationally more intensive.

The Duhamel’s superposition method can provide the most
ccurate solutions when used with a small time step 
t. How-
ver, this also leads to its disadvantages. The method requires
ignificantly more computation time when the time frame is long
nd the time step is small. It also demands more storage space

o record values of dependent variables from all previous time
teps because those values are required in the calculation for the
urrent time step (Eq. (2a)). When the method is used in porous
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Fig. 4. Experimental (symbols) and simulated (lines) discharge profiles at differ-
ent current rates. The rates from top to bottom: C/7, C/2.7, and C/1.3 (C = 4 mA).
T
s
c

s
t
(
i
a
c
i

t
diffusion equation in the r direction. These models use the
same parameters given in Table 1 and the simulation results
are compared with those obtained using the pseudo-2D model
in Figs. 5–7.
ig. 3. A tight error tolerance is required to solve PSS method with more sum-
ation terms. PSS method with four summation terms requires smaller error

olerance to get accurate results. δ(τ) = sin(5τ).

lectrode model and localized at each discretization node along
patial coordinates, the computation and storage requirement
ecome exacerbated, as will be shown in the following section.

The preliminary dimensionless analysis indicates that pseudo
teady state method and the high order polynomial method
ould be good choices for the use in porous electrode model.

n the following, we will compare the usage of the approxima-
ion methods in a porous electrode model to predict discharge
rofiles of a LiCoO2 half cell.

. Approximation methods in a porous electrode model

Equations for a porous electrode model have been described
xtensively in many papers [1,2] and they will not be repeated
ere. The discharge profiles of a LiCoO2 electrode were mea-
ured in an experiment, the details of which were revealed
lsewhere [18]. A pseudo-2D porous electrode model was used
n the study to simulate the discharge profiles. By pseudo-2D, we

ean that the model is solved in the spatial coordinate x along
ith the solid phase diffusion equation being solved in the extra
dimension at each x. In order to obtain good simulation results,

he symmetry factor β in the Butler Volmer equation was empir-
cally assumed to change with the cell state of discharge [18].
he empirical expression for the Butler Volmer equation was

ormulated as follows:

n = kpc
αa
e (cmax − cse)αacαc

se

(
exp

(
αaF

RT
(φs − φe − Ueq

− jnFRf)) − exp

(
−αcF

RT
(φs − φe − Ueq − jnFRf)

))
(12a)
c = β = 0.5

(
1 − 1

1 + exp(a(b − cse/cmax))

)
(12b)

a = 1 − β (12c)
F
a

he pseudo-2D porous electrode model well captures the effect of increased
olid phase diffusion limitation at higher current rates indicated by the increased
urvature at the beginning of discharge.

Fig. 4 presents a comparison of the experimental and
imulated discharge profiles using the pseudo-2D porous elec-
rode model at different current rates: C/7, C/2.7, and C/1.3
C = 4 mA). The pseudo-2D model captures well the effect of
ncreased solid phase diffusion limitation at higher current rates,
s indicated by the increased curvature at the beginning of dis-
harge profiles. The parameters used in the simulation are listed
n Table 1.

The approximation methods are used next in the porous elec-
rode model to eliminate the need to solve the solid phase
ig. 5. Comparison of simulation results from porous electrode models with
pproximation methods and pseudo-2D model. Discharge rate is C/7 (C = 4 mA).
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Table 1
Model parameters used to simulate the discharge curves

Parameter Value

LiCoO2 electrode
T (◦C) 15a

W (g) 0.0245a

δp (cm) 64 × 10−4a

εe 0.30a

S (cm2) 1.267a

Rs (cm) 10 × 10−4a

σs (S cm−1) 0.1b

Brug 1.5b

Ds (cm2 s−1) 1.2 × 10−10c

Rf (� cm2) 200c

x0,p 0.393c

kp 2.59 × 10−6c

Separator
ce,0 1 × 10−3a

δs (cm) 25 × 10−4a

log(De) (cm2 s−1) −4.43 − 54/(T − 5 × 103ce − 229) − 0.22 × 103ce
d

κe (S cm−1) ce(−10.5 + 0.074T − 6.96 × 10−5T 2 + 668ce − 17.8ceT + 0.028ceT
2 + 4.94 × 105c2

e − 886c2
eT )

2d

v = (1 − t0+)
(

1 + d lnf±
d lnce

)
0.601 − 7.59c0.5

e + 3.1 × 104(2.53 − 0.0052T )c1.5
e

d

S (cm2) 1.267a

εe 0.46a

Parameters used in Eqs. (12a)–(12c)

ac bc

C/7 21 0.92
C/2.7 13 0.88
C/1.3 8 0.8

a Manufacturer data or experiment data.

t
l
t

F
r

b From Refs. [3,19,20].
c Values fit to experiment data.
d From Ref. [21].
The simulation results show that the choice of an approxima-
ion method is more important at high current rates than it is at
ow current rates. The long time behavior is also less affected
han the short time behavior. The short time behavior is very

ig. 6. Comparison of simulation results from porous electrode models with app-
oximation methods and pseudo-2D model. Discharge rate is C/2.7 (C = 4 mA).
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mportant in studying the discharge profiles of the LiCoO2 elec-
rode because it reflects valuable information about how severe
he solid diffusion limitation is in the LiCoO2 electrode. Sim-
lation results obtained from the model using the low order

ig. 7. Comparison of simulation results from porous electrode models with app-
oximation methods and pseudo-2D model. Discharge rate is C/1.3 (C = 4 mA).
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Table 2
Computation time (in seconds) required to solve the porous electrode modelsa

C/7 C/2.7 C/1.3

Low order polynomial 1 0.9 0.9
Corrected diffusion length 1.1 1.0 1.0
High order polynomial 1.2 1.1 1.1
Duhamel 62 89 87
PSS 1.5 1.4 1.3
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[
[

[

[
[
[
[

[

[

[

seudo-2D 10.5 10 9.6

a Average of five runs.

olynomial method (or uncorrected diffusion length method)
ave significant errors at the beginning of discharge, especially
hen the discharge current is high. The model basically failed

o show how the solid phase diffusion influences the discharge
urves of the LiCoO2 electrode. The corrected diffusion length
ethod provides significantly improved results compared to

he uncorrected method in describing transient behaviors, but it
ends to slightly over predict the cell potential. The model using
he Duhamel superposition method is accurate, but it requires

uch more computation time than the pseudo-2D model. All
ther models using an approximation method have significant
peed advantages over the pseudo-2D model. Table 2 lists the
omputation times required to solve these models using DASSL
22] solver. The model using the high order polynomial method
rovides good results at most times, but it is inferior to the PSS
ethod at short times when the current is high. The PSS method

tands out in the comparison because the model using the PSS
ethod is able to provide simulation results not only with accu-

acy but also with a speed advantage. It should be noted that even
hough the study is based on a LiCoO2 electrode with character-
stic particles size of 10 × 10−4 cm, the models are expected to
erform mostly the same as long as the lithium transport in the
articles can be mathematically described through Fick’s diffu-
ion law (Eqs. (1a)–(1c)), regardless of the electrode materials
nd particle sizes.

. Summary
Approximation methods are often used in porous electrode
odels to make them more computationally efficient. In this
ork, the Duhamel’s superposition method, the corrected diffu-

ion length method, the polynomial approximation method, and

[
[
[

er Sources 165 (2007) 880–886

he pseudo steady state method are compared to each other in
dimensionless analysis study, and they are used in a porous

lectrode model to describe the discharge profiles of a LiCoO2
lectrode in a half cell. The low order polynomial method was
ound to be inadequate for transient behavior in both studies.
lthough the corrected diffusion length method proved reason-

bly accurate at short times, this method did not converge to
he exact solution at steady state. The Duhamel’s superposi-
ion method requires extensive computation time and storage
pace. Simulation results show that porous electrode model
sing Duhamel’s method requires even more computation time
han the pseudo-2D model when the DASSL solver is used.
his study indicates that the pseudo steady state method or the
igh order polynomial method should be considered first if an
pproximation method is to be used in a porous electrode model.
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